core-admin/qubes/qmemman/algo.py
Marek Marczykowski-Górecki a2d9b15413
qmemman: support simple VM meminfo format
Instead of excerpt from /proc/meminfo, use just one integer. This make
qmemman handling much easier and ease implementation for non-Linux OSes
(where /proc/meminfo doesn't exist).

For now keep also support for old format.

Fixes QubesOS/qubes-issues#1312
2016-09-08 04:17:48 +02:00

298 lines
12 KiB
Python

#!/usr/bin/python2
# -*- coding: utf-8 -*-
# pylint: skip-file
#
# The Qubes OS Project, http://www.qubes-os.org
#
# Copyright (C) 2010 Rafal Wojtczuk <rafal@invisiblethingslab.com>
# Copyright (C) 2013 Marek Marczykowski <marmarek@invisiblethingslab.com>
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
#
import logging
import string
# This are only defaults - can be overridden by QMemmanServer with values from
# config file
CACHE_FACTOR = 1.3
MIN_PREFMEM = 200*1024*1024
DOM0_MEM_BOOST = 350*1024*1024
log = logging.getLogger('qmemman.daemon.algo')
#untrusted meminfo size is taken from xenstore key, thus its size is limited
#so splits do not require excessive memory
def sanitize_and_parse_meminfo(untrusted_meminfo):
if not untrusted_meminfo:
return None
# new syntax - just one int
try:
if int(untrusted_meminfo) >= 0:
return int(untrusted_meminfo)
except ValueError:
pass
# not new syntax - try the old one
untrusted_dict = {}
# split meminfo contents into lines
untrusted_lines = string.split(untrusted_meminfo, "\n")
for untrusted_lines_iterator in untrusted_lines:
# split a single meminfo line into words
untrusted_words = string.split(untrusted_lines_iterator)
if len(untrusted_words) >= 2:
untrusted_dict[string.rstrip(untrusted_words[0], ":")] = \
untrusted_words[1]
# sanitize start
if not is_meminfo_suspicious(untrusted_meminfo):
# sanitize end
meminfo = untrusted_meminfo
return meminfo['MemTotal'] - \
meminfo['MemFree'] - meminfo['Cached'] - meminfo['Buffers'] + \
meminfo['SwapTotal'] - meminfo['SwapFree']
return None
def is_meminfo_suspicious(untrusted_meminfo):
log.debug('is_meminfo_suspicious('
'untrusted_meminfo={!r})'.format(untrusted_meminfo))
ret = False
# check whether the required keys exist and are not negative
try:
for i in ('MemTotal', 'MemFree', 'Buffers', 'Cached',
'SwapTotal', 'SwapFree'):
val = int(untrusted_meminfo[i])*1024
if val < 0:
ret = True
untrusted_meminfo[i] = val
except:
ret = True
if untrusted_meminfo['SwapTotal'] < untrusted_meminfo['SwapFree']:
ret = True
if untrusted_meminfo['MemTotal'] < \
untrusted_meminfo['MemFree'] + \
untrusted_meminfo['Cached'] + untrusted_meminfo['Buffers']:
ret = True
# we could also impose some limits on all the above values
# but it has little purpose - all the domain can gain by passing e.g.
# very large SwapTotal is that it will be assigned all free Xen memory
# it can be achieved with legal values, too, and it will not allow to
# starve existing domains, by design
if ret:
log.warning('suspicious meminfo untrusted_meminfo={!r}'.format(untrusted_meminfo))
return ret
# called when a domain updates its 'meminfo' xenstore key
def refresh_meminfo_for_domain(domain, untrusted_xenstore_key):
domain.mem_used = sanitize_and_parse_meminfo(untrusted_xenstore_key)
def prefmem(domain):
#dom0 is special, as it must have large cache, for vbds. Thus, give it a special boost
if domain.id == '0':
return min(domain.mem_used*CACHE_FACTOR + 350*1024*1024, domain.memory_maximum)
return max(min(domain.mem_used*CACHE_FACTOR, domain.memory_maximum), MIN_PREFMEM)
def memory_needed(domain):
#do not change
#in balance(), "distribute total_available_memory proportionally to mempref" relies on this exact formula
ret = prefmem(domain) - domain.memory_actual
return ret
#prepare list of (domain, memory_target) pairs that need to be passed
#to "xm memset" equivalent in order to obtain "memsize" of memory
#return empty list when the request cannot be satisfied
def balloon(memsize, domain_dictionary):
log.debug('balloon(memsize={!r}, domain_dictionary={!r})'.format(
memsize, domain_dictionary))
REQ_SAFETY_NET_FACTOR = 1.05
donors = list()
request = list()
available = 0
for i in domain_dictionary.keys():
if domain_dictionary[i].meminfo is None:
continue
if domain_dictionary[i].no_progress:
continue
need = memory_needed(domain_dictionary[i])
if need < 0:
log.info('balloon: dom {} has actual memory {}'.format(i,
domain_dictionary[i].memory_actual))
donors.append((i,-need))
available-=need
log.info('req={} avail={} donors={!r}'.format(memsize, available, donors))
if available<memsize:
return ()
scale = 1.0*memsize/available
for donors_iter in donors:
id, mem = donors_iter
memborrowed = mem*scale*REQ_SAFETY_NET_FACTOR
log.info('borrow {} from {}'.format(memborrowed, id))
memtarget = int(domain_dictionary[id].memory_actual - memborrowed)
request.append((id, memtarget))
return request
# REQ_SAFETY_NET_FACTOR is a bit greater that 1. So that if the domain yields a bit less than requested, due
# to e.g. rounding errors, we will not get stuck. The surplus will return to the VM during "balance" call.
#redistribute positive "total_available_memory" of memory between domains, proportionally to prefmem
def balance_when_enough_memory(domain_dictionary,
xen_free_memory, total_mem_pref, total_available_memory):
log.info('balance_when_enough_memory(xen_free_memory={!r}, '
'total_mem_pref={!r}, total_available_memory={!r})'.format(
xen_free_memory, total_mem_pref, total_available_memory))
target_memory = {}
# memory not assigned because of static max
left_memory = 0
acceptors_count = 0
for i in domain_dictionary.keys():
if domain_dictionary[i].mem_used is None:
continue
if domain_dictionary[i].no_progress:
continue
#distribute total_available_memory proportionally to mempref
scale = 1.0*prefmem(domain_dictionary[i])/total_mem_pref
target_nonint = prefmem(domain_dictionary[i]) + scale*total_available_memory
#prevent rounding errors
target = int(0.999*target_nonint)
#do not try to give more memory than static max
if target > domain_dictionary[i].memory_maximum:
left_memory += target-domain_dictionary[i].memory_maximum
target = domain_dictionary[i].memory_maximum
else:
# count domains which can accept more memory
acceptors_count += 1
target_memory[i] = target
# distribute left memory across all acceptors
while left_memory > 0 and acceptors_count > 0:
log.info('left_memory={} acceptors_count={}'.format(
left_memory, acceptors_count))
new_left_memory = 0
new_acceptors_count = acceptors_count
for i in target_memory.keys():
target = target_memory[i]
if target < domain_dictionary[i].memory_maximum:
memory_bonus = int(0.999*(left_memory/acceptors_count))
if target+memory_bonus >= domain_dictionary[i].memory_maximum:
new_left_memory += target+memory_bonus - domain_dictionary[i].memory_maximum
target = domain_dictionary[i].memory_maximum
new_acceptors_count -= 1
else:
target += memory_bonus
target_memory[i] = target
left_memory = new_left_memory
acceptors_count = new_acceptors_count
# split target_memory dictionary to donors and acceptors
# this is needed to first get memory from donors and only then give it to acceptors
donors_rq = list()
acceptors_rq = list()
for i in target_memory.keys():
target = target_memory[i]
if (target < domain_dictionary[i].memory_actual):
donors_rq.append((i, target))
else:
acceptors_rq.append((i, target))
# print 'balance(enough): xen_free_memory=', xen_free_memory, 'requests:', donors_rq + acceptors_rq
return donors_rq + acceptors_rq
#when not enough mem to make everyone be above prefmem, make donors be at prefmem, and
#redistribute anything left between acceptors
def balance_when_low_on_memory(domain_dictionary,
xen_free_memory, total_mem_pref_acceptors, donors, acceptors):
log.debug('balance_when_low_on_memory(xen_free_memory={!r}, '
'total_mem_pref_acceptors={!r}, donors={!r}, acceptors={!r})'.format(
xen_free_memory, total_mem_pref_acceptors, donors, acceptors))
donors_rq = list()
acceptors_rq = list()
squeezed_mem = xen_free_memory
for i in donors:
avail = -memory_needed(domain_dictionary[i])
if avail < 10*1024*1024:
#probably we have already tried making it exactly at prefmem, give up
continue
squeezed_mem -= avail
donors_rq.append((i, prefmem(domain_dictionary[i])))
#the below can happen if initially xen free memory is below 50M
if squeezed_mem < 0:
return donors_rq
for i in acceptors:
scale = 1.0*prefmem(domain_dictionary[i])/total_mem_pref_acceptors
target_nonint = domain_dictionary[i].memory_actual + scale*squeezed_mem
#do not try to give more memory than static max
target = min(int(0.999*target_nonint), domain_dictionary[i].memory_maximum)
acceptors_rq.append((i, target))
# print 'balance(low): xen_free_memory=', xen_free_memory, 'requests:', donors_rq + acceptors_rq
return donors_rq + acceptors_rq
#redistribute memory across domains
#called when one of domains update its 'meminfo' xenstore key
#return the list of (domain, memory_target) pairs to be passed to
#"xm memset" equivalent
def balance(xen_free_memory, domain_dictionary):
log.debug('balance(xen_free_memory={!r}, domain_dictionary={!r})'.format(
xen_free_memory, domain_dictionary))
#sum of all memory requirements - in other words, the difference between
#memory required to be added to domains (acceptors) to make them be at their
#preferred memory, and memory that can be taken from domains (donors) that
#can provide memory. So, it can be negative when plenty of memory.
total_memory_needed = 0
#sum of memory preferences of all domains
total_mem_pref = 0
#sum of memory preferences of all domains that require more memory
total_mem_pref_acceptors = 0
donors = list() # domains that can yield memory
acceptors = list() # domains that require more memory
#pass 1: compute the above "total" values
for i in domain_dictionary.keys():
if domain_dictionary[i].mem_used is None:
continue
if domain_dictionary[i].no_progress:
continue
need = memory_needed(domain_dictionary[i])
# print 'domain' , i, 'act/pref', domain_dictionary[i].memory_actual, prefmem(domain_dictionary[i]), 'need=', need
if need < 0 or domain_dictionary[i].memory_actual >= domain_dictionary[i].memory_maximum:
donors.append(i)
else:
acceptors.append(i)
total_mem_pref_acceptors += prefmem(domain_dictionary[i])
total_memory_needed += need
total_mem_pref += prefmem(domain_dictionary[i])
total_available_memory = xen_free_memory - total_memory_needed
if total_available_memory > 0:
return balance_when_enough_memory(domain_dictionary, xen_free_memory, total_mem_pref, total_available_memory)
else:
return balance_when_low_on_memory(domain_dictionary, xen_free_memory, total_mem_pref_acceptors, donors, acceptors)