 57aec48050
			
		
	
	
		57aec48050
		
	
	
	
	
		
			
			If domain has less than 100MB it will cause OOM very soon - this isn't enough for non-swappable data...
		
			
				
	
	
		
			226 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			226 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| import string
 | |
| 
 | |
| #untrusted meminfo size is taken from xenstore key, thus its size is limited
 | |
| #so splits do not require excessive memory
 | |
| def parse_meminfo(untrusted_meminfo):
 | |
|     untrusted_dict = {}
 | |
| #split meminfo contents into lines
 | |
|     untrusted_lines = string.split(untrusted_meminfo,"\n")
 | |
|     for untrusted_lines_iterator in untrusted_lines:
 | |
| #split a single meminfo line into words
 | |
|         untrusted_words = string.split(untrusted_lines_iterator)
 | |
|         if len(untrusted_words) >= 2:
 | |
|             untrusted_dict[string.rstrip(untrusted_words[0], ":")] = untrusted_words[1]
 | |
| 
 | |
|     return untrusted_dict
 | |
| 
 | |
| def is_meminfo_suspicious(domain, untrusted_meminfo):
 | |
|     ret = False
 | |
|     
 | |
| #check whether the required keys exist and are not negative
 | |
|     try:
 | |
|         for i in ('MemTotal', 'MemFree', 'Buffers', 'Cached', 'SwapTotal', 'SwapFree'):
 | |
|             val = int(untrusted_meminfo[i])*1024
 | |
|             if (val < 0):
 | |
|                 ret = True
 | |
|             untrusted_meminfo[i] = val
 | |
|     except:
 | |
|         ret = True
 | |
| 
 | |
|     if not ret and untrusted_meminfo['SwapTotal'] < untrusted_meminfo['SwapFree']:
 | |
|         ret = True
 | |
|     if not ret and untrusted_meminfo['MemTotal'] < untrusted_meminfo['MemFree'] + untrusted_meminfo['Cached'] + untrusted_meminfo['Buffers']:
 | |
|         ret = True
 | |
| #we could also impose some limits on all the above values
 | |
| #but it has little purpose - all the domain can gain by passing e.g. 
 | |
| #very large SwapTotal is that it will be assigned all free Xen memory
 | |
| #it can be achieved with legal values, too, and it will not allow to
 | |
| #starve existing domains, by design
 | |
|     if ret:
 | |
|         print 'suspicious meminfo for domain', domain.id, 'mem actual', domain.memory_actual, untrusted_meminfo
 | |
|     return ret
 | |
| 
 | |
| #called when a domain updates its 'meminfo' xenstore key
 | |
| def refresh_meminfo_for_domain(domain, untrusted_xenstore_key):
 | |
|     untrusted_meminfo = parse_meminfo(untrusted_xenstore_key)
 | |
|     if untrusted_meminfo is None:
 | |
|         domain.meminfo = None
 | |
|         return
 | |
| #sanitize start
 | |
|     if is_meminfo_suspicious(domain, untrusted_meminfo):
 | |
| #sanitize end
 | |
|         domain.meminfo = None
 | |
|         domain.mem_used = None
 | |
|     else:
 | |
| #sanitized, can assign
 | |
|         domain.meminfo = untrusted_meminfo
 | |
|         domain.mem_used =  domain.meminfo['MemTotal'] - domain.meminfo['MemFree'] - domain.meminfo['Cached'] - domain.meminfo['Buffers'] + domain.meminfo['SwapTotal'] - domain.meminfo['SwapFree']
 | |
|                         
 | |
| def prefmem(domain):
 | |
|     CACHE_FACTOR = 1.3
 | |
|     MIN_PREFMEM = 100*1024*1024
 | |
| #dom0 is special, as it must have large cache, for vbds. Thus, give it a special boost
 | |
|     if domain.id == '0':
 | |
|         return min(domain.mem_used*CACHE_FACTOR + 350*1024*1024, domain.memory_maximum)
 | |
|     return max(min(domain.mem_used*CACHE_FACTOR, domain.memory_maximum), MIN_PREFMEM)
 | |
| 
 | |
| def memory_needed(domain):
 | |
| #do not change
 | |
| #in balance(), "distribute total_available_memory proportionally to mempref" relies on this exact formula
 | |
|     ret = prefmem(domain) - domain.memory_actual
 | |
|     return ret
 | |
|     
 | |
| #prepare list of (domain, memory_target) pairs that need to be passed
 | |
| #to "xm memset" equivalent in order to obtain "memsize" of memory
 | |
| #return empty list when the request cannot be satisfied
 | |
| def balloon(memsize, domain_dictionary):
 | |
|     REQ_SAFETY_NET_FACTOR = 1.05
 | |
|     donors = list()
 | |
|     request = list()
 | |
|     available = 0
 | |
|     for i in domain_dictionary.keys():
 | |
|         if domain_dictionary[i].meminfo is None:
 | |
|             continue
 | |
|         if domain_dictionary[i].no_progress:
 | |
|             continue
 | |
|         need = memory_needed(domain_dictionary[i])
 | |
|         if need < 0:
 | |
|             print 'balloon: dom' , i, 'has actual memory', domain_dictionary[i].memory_actual
 | |
|             donors.append((i,-need))
 | |
|             available-=need   
 | |
|     print 'req=', memsize, 'avail=', available, 'donors', donors
 | |
|     if available<memsize:
 | |
|         return ()
 | |
|     scale = 1.0*memsize/available
 | |
|     for donors_iter in donors:
 | |
|         id, mem = donors_iter
 | |
|         memborrowed = mem*scale*REQ_SAFETY_NET_FACTOR
 | |
|         print 'borrow' , memborrowed, 'from', id
 | |
|         memtarget = int(domain_dictionary[id].memory_actual - memborrowed)
 | |
|         request.append((id, memtarget))
 | |
|     return request
 | |
| # REQ_SAFETY_NET_FACTOR is a bit greater that 1. So that if the domain yields a bit less than requested, due
 | |
| # to e.g. rounding errors, we will not get stuck. The surplus will return to the VM during "balance" call.
 | |
| 
 | |
| 
 | |
| #redistribute positive "total_available_memory" of memory between domains, proportionally to prefmem
 | |
| def balance_when_enough_memory(domain_dictionary, xen_free_memory, total_mem_pref, total_available_memory):
 | |
|     print 'balance_when_enough_memory(', xen_free_memory, total_mem_pref, total_available_memory, ')'
 | |
|     target_memory = {}
 | |
|     # memory not assigned because of static max
 | |
|     left_memory = 0
 | |
|     acceptors_count = 0
 | |
|     for i in domain_dictionary.keys():
 | |
|         if domain_dictionary[i].meminfo is None:
 | |
|             continue
 | |
| #distribute total_available_memory proportionally to mempref
 | |
|         scale = 1.0*prefmem(domain_dictionary[i])/total_mem_pref
 | |
|         target_nonint = prefmem(domain_dictionary[i]) + scale*total_available_memory
 | |
| #prevent rounding errors
 | |
|         target = int(0.999*target_nonint)
 | |
| #do not try to give more memory than static max
 | |
|         if target > domain_dictionary[i].memory_maximum:
 | |
|             left_memory += target-domain_dictionary[i].memory_maximum
 | |
|             target = domain_dictionary[i].memory_maximum
 | |
|         else:
 | |
| # count domains which can accept more memory
 | |
|             acceptors_count += 1
 | |
|         target_memory[i] = target
 | |
| # distribute left memory across all acceptors
 | |
|     while left_memory > 0 and acceptors_count > 0:
 | |
|         print '  left_memory:', left_memory, 'acceptors_count:', acceptors_count
 | |
|         new_left_memory = 0
 | |
|         new_acceptors_count = acceptors_count
 | |
|         for i in target_memory.keys():
 | |
|             target = target_memory[i]
 | |
|             if target < domain_dictionary[i].memory_maximum:
 | |
|                 memory_bonus = int(0.999*(left_memory/acceptors_count))
 | |
|                 if target+memory_bonus >= domain_dictionary[i].memory_maximum:
 | |
|                     new_left_memory += target+memory_bonus - domain_dictionary[i].memory_maximum
 | |
|                     target = domain_dictionary[i].memory_maximum
 | |
|                     new_acceptors_count -= 1
 | |
|                 else:
 | |
|                     target += memory_bonus
 | |
|             target_memory[i] = target
 | |
|         left_memory = new_left_memory
 | |
|         acceptors_count = new_acceptors_count
 | |
| # split target_memory dictionary to donors and acceptors
 | |
| #  this is needed to first get memory from donors and only then give it to acceptors
 | |
|     donors_rq = list()
 | |
|     acceptors_rq = list()
 | |
|     for i in target_memory.keys():
 | |
|         target = target_memory[i]
 | |
|         if (target < domain_dictionary[i].memory_actual):
 | |
|             donors_rq.append((i, target))
 | |
|         else:
 | |
|             acceptors_rq.append((i, target))
 | |
| 
 | |
| #    print 'balance(enough): xen_free_memory=', xen_free_memory, 'requests:', donors_rq + acceptors_rq
 | |
|     return donors_rq + acceptors_rq
 | |
| 
 | |
| #when not enough mem to make everyone be above prefmem, make donors be at prefmem, and 
 | |
| #redistribute anything left between acceptors
 | |
| def balance_when_low_on_memory(domain_dictionary, xen_free_memory, total_mem_pref_acceptors, donors, acceptors):
 | |
|     donors_rq = list()
 | |
|     acceptors_rq = list()
 | |
|     squeezed_mem = xen_free_memory
 | |
|     for i in donors:
 | |
|         avail = -memory_needed(domain_dictionary[i])
 | |
|         if avail < 10*1024*1024:
 | |
|             #probably we have already tried making it exactly at prefmem, give up
 | |
|             continue
 | |
|         squeezed_mem -= avail
 | |
|         donors_rq.append((i, prefmem(domain_dictionary[i])))
 | |
| #the below can happen if initially xen free memory is below 50M
 | |
|     if squeezed_mem < 0:
 | |
|         return donors_rq
 | |
|     for i in acceptors:
 | |
|         scale = 1.0*prefmem(domain_dictionary[i])/total_mem_pref_acceptors
 | |
|         target_nonint = domain_dictionary[i].memory_actual + scale*squeezed_mem
 | |
| #do not try to give more memory than static max
 | |
|         target = min(int(0.999*target_nonint), domain_dictionary[i].memory_maximum)
 | |
|         acceptors_rq.append((i, target))
 | |
| #    print 'balance(low): xen_free_memory=', xen_free_memory, 'requests:', donors_rq + acceptors_rq
 | |
|     return donors_rq + acceptors_rq
 | |
| 
 | |
| 
 | |
| #redistribute memory across domains
 | |
| #called when one of domains update its 'meminfo' xenstore key 
 | |
| #return the list of (domain, memory_target) pairs to be passed to
 | |
| #"xm memset" equivalent 
 | |
| def balance(xen_free_memory, domain_dictionary):
 | |
| 
 | |
| #sum of all memory requirements - in other words, the difference between
 | |
| #memory required to be added to domains (acceptors) to make them be at their 
 | |
| #preferred memory, and memory that can be taken from domains (donors) that
 | |
| #can provide memory. So, it can be negative when plenty of memory.
 | |
|     total_memory_needed = 0
 | |
| 
 | |
| #sum of memory preferences of all domains
 | |
|     total_mem_pref = 0
 | |
| 
 | |
| #sum of memory preferences of all domains that require more memory
 | |
|     total_mem_pref_acceptors = 0
 | |
|     
 | |
|     donors = list()	# domains that can yield memory
 | |
|     acceptors = list()  # domains that require more memory
 | |
| #pass 1: compute the above "total" values
 | |
|     for i in domain_dictionary.keys():
 | |
|         if domain_dictionary[i].meminfo is None:
 | |
|             continue
 | |
|         need = memory_needed(domain_dictionary[i])
 | |
| #        print 'domain' , i, 'act/pref', domain_dictionary[i].memory_actual, prefmem(domain_dictionary[i]), 'need=', need
 | |
|         if need < 0 or domain_dictionary[i].memory_actual >= domain_dictionary[i].memory_maximum:
 | |
|             donors.append(i)
 | |
|         else:
 | |
|             acceptors.append(i)
 | |
|             total_mem_pref_acceptors += prefmem(domain_dictionary[i])
 | |
|         total_memory_needed += need
 | |
|         total_mem_pref += prefmem(domain_dictionary[i])
 | |
| 
 | |
|     total_available_memory = xen_free_memory - total_memory_needed  
 | |
|     if total_available_memory > 0:
 | |
|         return balance_when_enough_memory(domain_dictionary, xen_free_memory, total_mem_pref, total_available_memory)
 | |
|     else:
 | |
|         return balance_when_low_on_memory(domain_dictionary, xen_free_memory, total_mem_pref_acceptors, donors, acceptors)
 |